Remote Side-Channel Attacks on Heterogeneous SoC

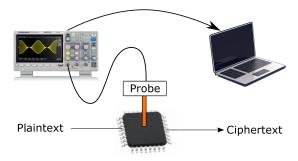
Joseph GRAVELLIER (EMSE) Jean-Max DUTERTRE (EMSE) Yannick TEGLIA (THALES) Philippe LOUBET-MOUNDI (THALES) Francis OLIVIER (THALES)

Laboratoire de Sécurité des Architectures et des Systèmes, F-13541 Gardanne France Thales - 13600 La Ciotat, France

November 2019

Joseph GRAVELLIER

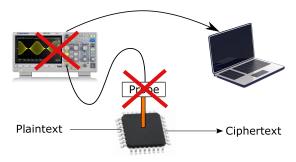
CARDIS 2019


November 2019 1 / 26

Context

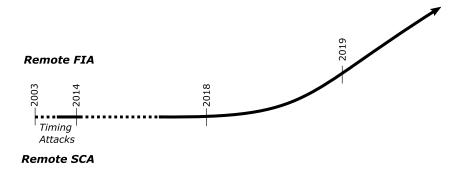
Usual Hardware Attacks

- Type: fault injection attack (FIA) & side-channel attack (SCA).
- Target: smart cards, microcontrollers, system on chip...
- Means: oscilloscope, laser, EM probe...
- Range: local, direct physical access required.

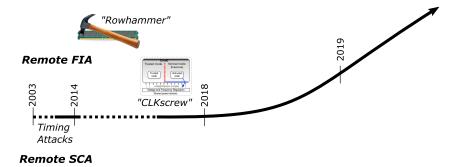


Context

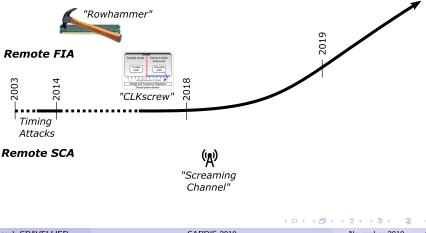
Remote Hardware Attacks



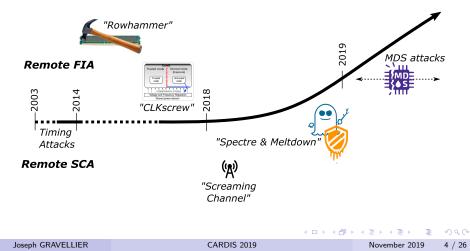
- Type: fault injection attack (FIA) & side-channel attack (SCA).
- Range: remote, access to a network required.
- Target: connected devices (IoT), data centers...
- Means: resources available within the target.



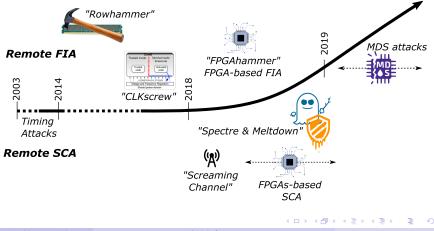
- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing



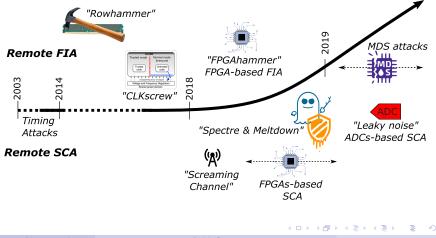
- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing



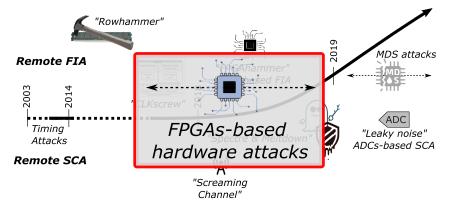
- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing



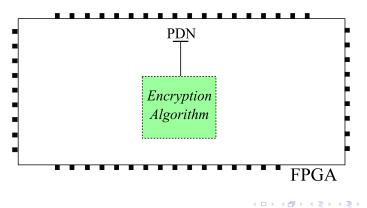
- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing



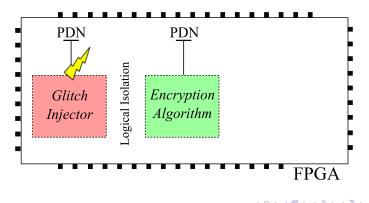
- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing



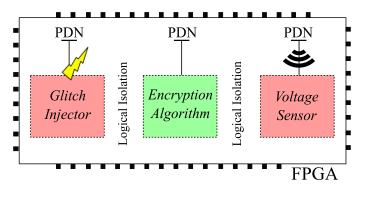
- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing


- Remote hardware attack topic keeps on gaining in popularity:
 - Emergence of cloud services, IoT, decentralized computing

Basics

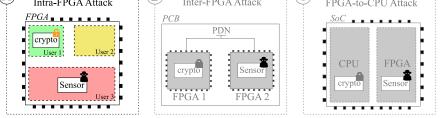

- Usual hardware attacks can be entirely reproduced within FPGA logic:
 - Encryption **algorithm** implementation.
 - Voltage glitch injector implementation (Krautter et al).
 - Voltage **sensor** implementation (Schellenberg et al).

Basics


- Usual hardware attacks can be entirely reproduced within FPGA logic:
 - Encryption **algorithm** implementation.
 - Voltage glitch injector implementation (Krautter et al).
 - Voltage **sensor** implementation (Schellenberg et al).

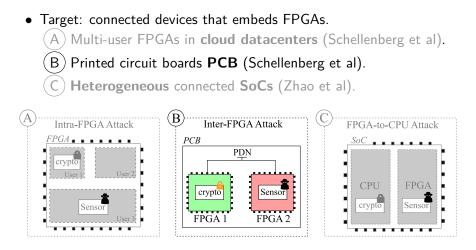
Basics

- Usual hardware attacks can be entirely reproduced within FPGA logic:
 - Encryption **algorithm** implementation.
 - Voltage glitch injector implementation (Krautter et al).
 - Voltage **sensor** implementation (Schellenberg et al).



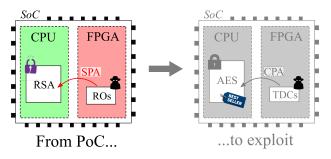
Threat model and related works

Target: connected devices that embeds FPGAs.


 A Multi-user FPGAs in cloud datacenters (Schellenberg et al).
 B Printed circuit boards PCB (Schellenberg et al).
 C Heterogeneous connected SoCs (Zhao et al).

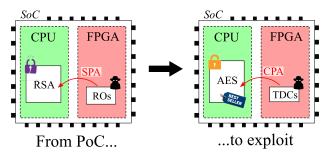
 A Intra-FPGA Attack B Inter-FPGA Attack C FPGA-to-CPU Attack

Threat model and related works

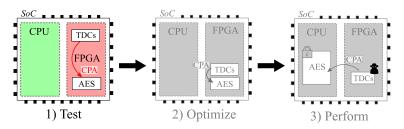

Threat model and related works

 Target: connected devices that embeds FPGAs. Multi-user FPGAs in **cloud datacenters** (Schellenberg et al). Printed circuit boards **PCB** (Schellenberg et al). В Heterogeneous connected SoCs (Zhao et al). Inter-FPGA Attack Intra-FPGA Attack FPGA-to-CPU Attack FPGANNNNNN PCB SoC PDN crypto CPU FPGA crypto Sensor crypto Senso Sensor

FPGA '

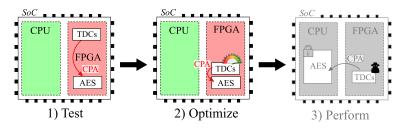


- Already proved:
 - CPU computations can be eavesdropped by FPGA-based sensors.
 - SPA attack on self-written software RSA using ROs.
- Our Goal:
 - Perform FPGA-based CPA attacks against open-source and deployed software AES implementations.

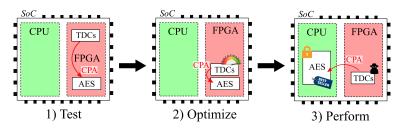


- Already proved:
 - CPU computations can be eavesdropped by FPGA-based sensors.
 - SPA attack on self-written software RSA using ROs.
- Our Goal:
 - Perform FPGA-based CPA attacks against open-source and deployed software AES implementations.

- Iterative implementation:
 - **Test** SCA on **hardware** AES implementation.
 - **Optimize** setup toward SCA on software AES.
 - 3) **Perform** SCA on **software** AES implementations.


Goal & Challenges

• Iterative implementation:


I) **Test** SCA on **hardware** AES implementation.

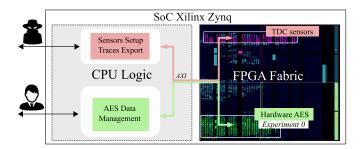
- 2) **Optimize** setup toward SCA on software AES.
- 3) **Perform** SCA on **software** AES implementations.

- Iterative implementation:
 - 1) **Test** SCA on **hardware** AES implementation.
 - 2) **Optimize** setup toward SCA on software AES.
 - (3) **Perform** SCA on **software** AES implementations.

$\bigcirc 1$ Hardware AES encryption key retrieval.

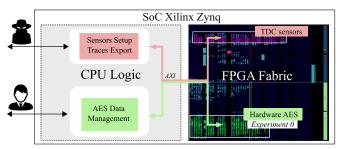
2 FPGA-based SCA **Optimization**.

3) **Software** AES encryption key retrieval.

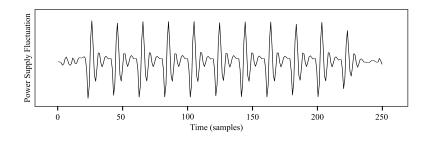

Introduction to Time-to-Digital Converter (TDC) sensor

- THALES
- Power supply fluctuations \Rightarrow Propagation delay variations.
- Time-To-Digital converter basics:
 - A *clk* signal propagates through a delay line.
 - A register periodically captures the delay line state.

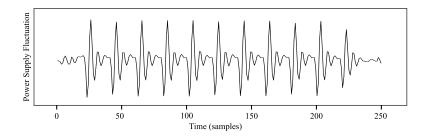
1 Hardware AES encryption key retrieval. THALES


- Target: Xilinx Zynq 7000 heterogeneous SoC
 - FPGA (Xilinx Artix-7) TDC sensors and AES algorithm
 - CPU (ARM Cortex-A9) Traces export and AES management

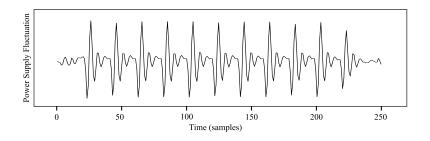
4 A N



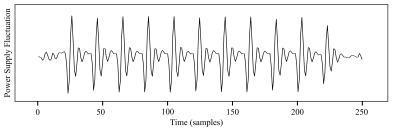
- Target: Xilinx Zynq 7000 heterogeneous SoC
 - FPGA (Xilinx Artix-7) TDC sensors and AES algorithm
 - CPU (ARM Cortex-A9) Traces export and AES management
- Experimental setup:
 - TDCs placed horizontally far away from AES => worst case scenario



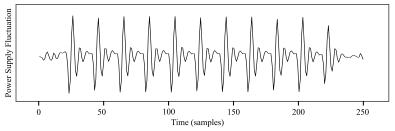
- Hardware AES attack
 - Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.



- Hardware AES attack
 - Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.
 - AES encryption time @10MHz \Rightarrow $1.1 \mu s$

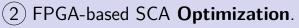

- Custom VHDL AES designed for the attack.
 - Key size **128 bit**, Datapath **128 bit**.
 - AES encryption time @10MHz \Rightarrow $1.1 \mu s$
 - Synchronisation \Rightarrow Encryption and measurement launched **simultaneously**.

Hardware AES attack


- Custom VHDL AES designed for the attack.
 - Key size **128 bit**, Datapath **128 bit**.
 - AES encryption time @10MHz \Rightarrow $1.1 \mu s$
 - Synchronisation \Rightarrow Encryption and measurement launched **simultaneously**.
 - − CPA model \Rightarrow AES Last round $HW[ARK_9 \oplus ARK_{10}]$

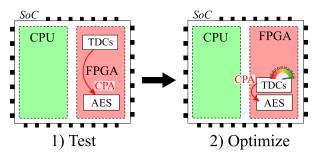
Hardware AES attack

- Hardware AES attack
 - Custom VHDL AES designed for the attack.
 - Key size 128 bit, Datapath 128 bit.
 - AES encryption time @10MHz \Rightarrow $1.1\mu s$
 - Synchronisation \Rightarrow Encryption and measurement launched **simultaneously**.
 - − CPA model \Rightarrow AES Last round $HW[ARK_9 \oplus ARK_{10}]$



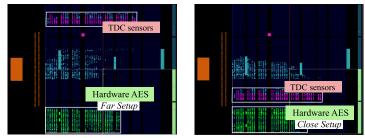
• Results: number of traces required to infer an AES key byte: 4,483.

2 FPGA-based SCA **Optimization**.


3) **Software** AES encryption key retrieval.

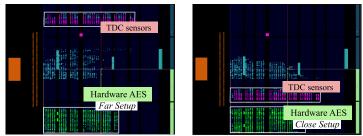
Presentation

- Several levers:
 - Placement: TDCs proximity to the target.
 - Performance: TDCs structure modifications.


Sensor proximimity to the target

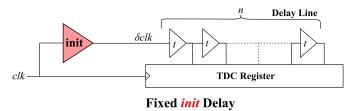
- Assumption:
 - Sensor proximity to the target should improve CPA results.
 - Less distance means less acquired noise.

Sensor proximimity to the target


- Assumption:
 - Sensor proximity to the target should improve CPA results.
 - Less distance means less acquired noise.
- Experimental Setup:
 - Far setup: 80 slices between AES & TDCs.
 - Close setup: 6 slices between AES & TDCs.

Sensor proximimity to the target

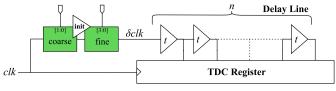
- Assumption:
 - Sensor proximity to the target should improve CPA results.
 - Less distance means less acquired noise.
- Experimental Setup:
 - Far setup: 80 slices between AES & TDCs.
 - Close setup: 6 slices between AES & TDCs.


• Results: CPA traces required drops from 4,483 to 3,440.

Joseph GRAVELLIER

init delay length / Voltage integration duration

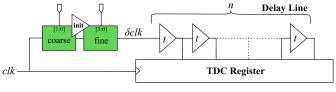
THALES MINES


- Fixed (classic) **init** delay:
 - Add 180° phase shift to form $\delta \textit{clk}$ signal.
 - Integrates voltage fluctuations during a **half** *clk* period.
- Reconfigurable (new) **init** delay:
 - Add $n * 180^{\circ}$ phase shift to form δclk signal.
 - Integrates voltage fluctuations during *n* * **half** *clk* period.

init delay length / Voltage integration duration

THALES

- Fixed (classic) **init** delay:
 - Add 180° phase shift to form $\delta \textit{clk}$ signal.
 - Integrates voltage fluctuations during a half *clk* period.
- Reconfigurable (new) init delay:
 - Add $n * 180^{\circ}$ phase shift to form δclk signal.
 - Integrates voltage fluctuations during n * half clk period.



Reconfigurable init Delay

init delay length / Voltage integration duration

THALES

- Fixed (classic) init delay:
 - Add 180° phase shift to form $\delta \textit{clk}$ signal.
 - Integrates voltage fluctuations during a **half** *clk* period.
- Reconfigurable (new) init delay:
 - Add $n * 180^{\circ}$ phase shift to form δclk signal.
 - Integrates voltage fluctuations during n * half clk period.

Reconfigurable *init* Delay

Results: CPA traces required **drops** from 3,440 to 1,381.

Joseph	GRAV	ELLIER	
--------	------	--------	--

Optimization Results & Discussion

• Results:

TDC Calibration	Average number of Traces	Optimization Factor
No	4,483	/
Placement	3,440	1,30
Init + Placement	1,381	3,25

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimization Results & Discussion

• Results:

TDC Calibration	Average number of Traces	Optimization Factor
No	4,483	/
Placement	3,440	1,30
Init + Placement	1,381	3,25

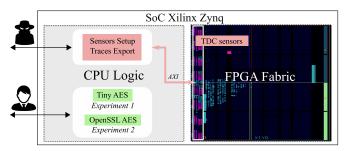
- TDCs calibration is substantial for the following CPU attacks.
 - Low CPU-to-FPGA side-channel leakage.
 - CPU frequency @666MHz >> TDC frequency @200MHz.

1) Hardware AES encryption key retrieval.

(2) FPGA-based SCA **Optimization**.

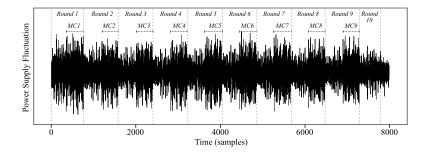
3) **Software** AES encryption key retrieval.

Experimental Setup

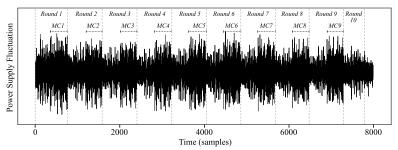


- Two freely-available software AES studied (Bare-metal programming):
 - Tiny AES 128 8 bit data-path.
 - OpenSSL AES 128 32 bit data-path (T-Table)

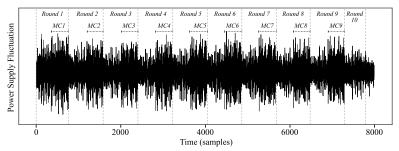
Experimental Setup


- Two freely-available software AES studied (Bare-metal programming):
 - Tiny AES 128 8 bit data-path.
 - OpenSSL AES 128 32 bit data-path (T-Table)
- Experimental setup:
 - 8 TDCs placed vertically on FPGA left part => make sense according to the implemented view.

3 Software AES encryption key retrieval. **THALES Tiny** AES attack

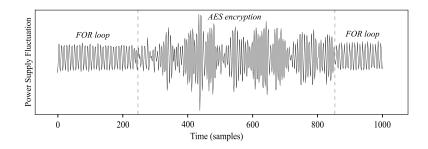

- $\bullet\,$ Small and portable implementation of the AES written in C.
 - Encryption time @666MHz \Rightarrow **40** μ s.

(3) **Software** AES encryption key retrieval. Tiny AES attack


- Small and portable implementation of the AES written in C.
 - Encryption time @666MHz \Rightarrow **40** μ s.
 - − CPA model \Rightarrow AES First round Sbox: $HW[Sbox(k \oplus m)]$.

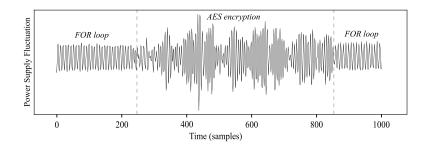
(3) **Software** AES encryption key retrieval. Tiny AES attack

- Small and portable implementation of the AES written in C.
 - Encryption time @666MHz \Rightarrow **40** μ s.
 - − CPA model \Rightarrow AES First round Sbox: $HW[Sbox(k \oplus m)]$.

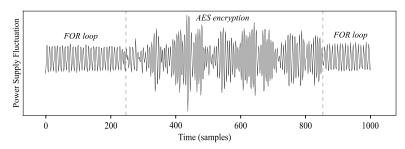


• Number of traces required to infer an AES key byte: 111,758.

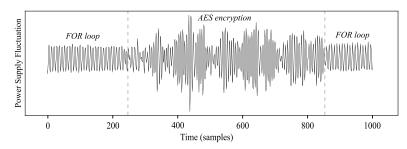
3 Software AES encryption key retrieval. **THALES** OpenSSL attack


- Crypto library used for secure channels over computer networks.
 - Datapath **32 bit** (T-table).

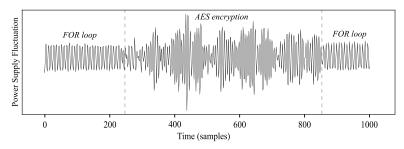
3 Software AES encryption key retrieval. OpenSSL attack



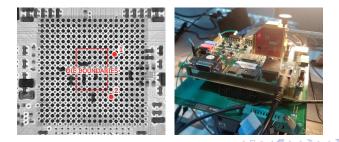
- Crypto library used for secure channels over computer networks.
 - Datapath **32 bit** (T-table).
 - AES encryption time @666MHz \Rightarrow **2.90** μ s



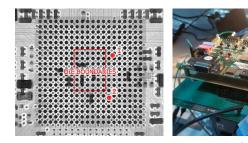
- Crypto library used for secure channels over computer networks.
 - Datapath **32 bit** (T-table).
 - AES encryption time @666MHz \Rightarrow **2.90** μ s
 - − CPA model \Rightarrow AES First round *Sbox*: $HW[Sbox(k \oplus m)]$


- Crypto library used for secure channels over computer networks.
 - Datapath **32 bit** (T-table).
 - AES encryption time @666MHz \Rightarrow **2.90** μ s
 - − CPA model \Rightarrow AES First round *Sbox*: $HW[Sbox(k \oplus m)]$

• Number of traces required to infer an AES key byte: 127,558.



- Crypto library used for secure channels over computer networks.
 - Datapath **32 bit** (T-table).
 - AES encryption time @666MHz \Rightarrow **2.90** μ s
 - − CPA model \Rightarrow AES First round *Sbox*: $HW[Sbox(k \oplus m)]$



- Number of traces required to infer an AES key byte: 127,558.
- Improved results with T-table model: 87,422 traces.

- THALES
- Goal: challenge TDC results regarding classical SCA.
- Experimental Setup:
 - Probe: Langer ICR HH 150
 - Oscilloscope Sampling Rate: 5 GS/s

- THALES
- Goal: challenge TDC results regarding classical SCA.
- Experimental Setup:
 - Probe: Langer ICR HH 150
 - Oscilloscope Sampling Rate: 5 GS/s
- Two hotspots:
 - 1
 ight) Best results for hardware AES algorithms. (FPGA)
 - 2) Best results for software AES algorithms. (CPU)

THALES MINES Saint-Étienne

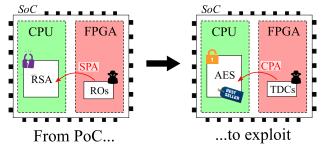
- CEMA conducted against each AES studied.
 - Osc sampling rate (5 GS/s) >> TDC sampling rate (200 MS/s).
 - Osc resolution >> TDC resolution

THALES MINES Saint-Étienne

- CEMA conducted against each AES studied.
 - Osc sampling rate (5 GS/s) >> TDC sampling rate (200 MS/s).
 - Osc resolution >> TDC resolution
- Results:

Setup	HAES	Tiny AES	OpenSSL 1	OpenSSL 2
EM	1,021	52,438	106,225	88,412
TDC	1,381	111,758	127,558	87,422

- CEMA conducted against each AES studied.
 - Osc sampling rate (5 GS/s) >> TDC sampling rate (200 MS/s).
 - Osc resolution >> TDC resolution
- Results:


Setup	HAES	Tiny AES	OpenSSL 1	OpenSSL 2
EM	1,021	52,438	106,225	88,412
TDC	1,381	111,758	127,558	87,422

- TDCs provide similar results to local side-channel:
 - Side-channel leakage behaviour.
 - TDC calibration (position, delay).

Conclusion

• FPGA-to-CPU statistical SCA attacks are practicable.

- To do list:
 - TDC in-depth study (shape, number, chip...)
 - TDC against side-channel countermeasures (shuffling, masking, random delays, jitter, etc).

Thank you! Questions?

joseph.gravellier@emse.fr

Joseph GRAVELLIER

CARDIS 2019

November 2019 26 / 26

▲
 ▲